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Pure Bayesian (Fully conditional)

Most Relevant but Least Robust

But life is about compromise:

Conditional frequentist, Objective Bayesian, Fiducial ...
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. D =G(_6 , U) (S)
oose Your v v v
Replication!

Data Signal Noise
Ex: D ={Xi,..., Xy}, where

Xi=0+U, U S NO,1),

and U ={U;,i=1,...,n} represents “God’s Uncertainty”

o Frequentist: Fix parameter 6, vary D
@ Bayesian:  Fix data D, vary 0

o Fiducial: Fix neither, but vary U, subject to the
constraint (S) (or implied constraints with A(U) fixed)



The differences are in the replications ...

Xiao-Li Meng

Choose Your
Replication!




differences are in the replications ...

Xiao-Li Meng

Choose Your
Replication!

Frequentist Inference

AN,

p(D'|6)



The differences are in the replications ...

Xiao-Li Meng

Choose Your
Replication!

Frequentist Inference Bayesian Inference

AN, N

D) Dy D --- D D
p(D'|0) p(¢'ID)

o p(D|0)mo(0")



Xiao-Li Meng

Choose Your
Replication!

Frequentist Inference Bayesian Inference
/

p(D'[6) p(¢'|D)

p(DI0")mo(6")

AN, NS

Fiducial Inference

0, 0, 0 - 0.,
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D, Dy D -+ D

p(D', 0'1A(V))

= p(D'10/, A(U))m(¢)
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+ Prior Dist.
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Sampling Dist.
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Confidence Dist. Posterior Dist.

N(X,1) 01X ~ N(X,1)
f }

Confidence Interval Posterior Interval
(X = 2p, X + 2p) (X =25, X + 2p)

Generate for i =1, ...
Xi|l0 ~ N(6,1), then
(X; — 1.96, X; + 1.96)
covers 6 95% of times

Fiducial

God'’s U Dist.
X—-0=U~ N(0,1)

Fiducial Dist.
0=X+U~ N(X,1)
}

Fiducial Interval
(X =25, X + 2p)
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S Sampling Dist. + Prior Dist. God’s U Dist.
R X0 ~ N(6,1) mo(6) o< 1 X—0=Un~ N(©,1)

Confidence Dist. Posterior Dist. Fiducial Dist.

N(X,1) 01X ~ N(X,1) 0=X+U~ N(X,1)
f | }
Confidence Interval Posterior Interval Fiducial Interval
(X =25, X + 2p) (X = 2p, X + 2p) (X = 2p, X + 2p)
Generate for i = 1,... Generate for i =1,... Generate for i =1,...

Xil0 ~ N(0,1), then 6;|X ~ N(X,1), then  6; ~ any 7(0), &

(X; — 1.96, X; +1.96) (X —1.96,X +1.96) X;|0; ~ N(6;,1), then
covers 6 95% of times coversf; 95% of times  (X;—1.96, X;+1.96)
covers 0; 95% of times
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Treating Data as Your Patient
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Inevitable Statistical “Bootstrap”:

Creating Internal Replications

(a) Deterministic Patterns
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Relevant Controls/Replications are always needed

Method Type

Point Estimate
Goal: Give our best

guess, 6, for value
of 8.

Set Estimate

Goal: Identify set, C(D),
of likely values for 8.

Hypothesis Test

Goal: Should we reject a
null hypothesis, H,, based
on evidence from data?

Error on Actual Problem

A

L(6,8)

Loss: Specify how “far”
6 is from 6 via loss
function.

(6¢CD))~

Coverage: Does our set
contain the true value
of 87

(T#T)

Type I or Il Error: Do we
falsely reject or falsely
accept H,?

Average Error over Relevant

Controls A’

Risk: The average loss
of an estimator over control
problems (D', 8").

Non-Coverage Probability:
Proportion of times a set
estimate, e.g. interval estimate,
fails to contain the true value
of 8.

Error Probability: The test's
rates of false rejection and
false acceptance when applied
to control problems.

References

Robinson 1979b
Rukhin 1988,

Lu and Berger 1989,
Fourdrinier and
Wells 2012

Casella 1992,
Goutis and Casella
1995,

Robinson 1979a,
Berger 1988

Hwang et al. 1992,
Berger et al. 1994,
Berger 2003

* 1( statement ) denotes the indicator function: it equals 1 if the statement in parentheses is true and 0 otherwise.
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(b) Pixels Sampled at Varying Densities
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The Problem Gets Easier
But My Intervals Get Longer 7!
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e Fact 1: X;, Y; marginally ancillary, not jointly ancillary.

e Fact 2: As || X]| or || Y]] increases, precision for 6 increases.

Option 1: Evaluate uncertainty of § (MLE) unconditionally.
Construct pivot (using inverse CDF) and invert into Cl.

@ Achieves exact, unconditional coverage.
Option 2: Evaluate uncertainty of § conditional on ||X]].

@ But what about the effect of || Y|| on precision?



A Heterogeneous Population of Datasets

Low [|X]| High [|X]]

-

High || Y1|
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Here's Where Resolution Helps Us Reason...

A Regression Perspective

e As ||X|| increases, precision of § increases.

Xiao-Li Meng

o As ||Y|| increases, precision of f increases.

@ The first order effects of || X|| and ||Y|| on precision are
robust to assumptions about 6.

But when we condition on ||X|| and ||Y]] ...

@ We also model second order effect: how ||.X|| and || Y]]
together affect data precision (their interaction).

@ Second order effect (interaction term) is not robust to
prior assumptions about 6.

@ How to account for first order effects while ignoring
second order effects and do so in a principled way?
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Fiducial's Pivotal Idea (Fraser 68, Hannig 09)

God's U Always Exists
Represent data as X = g(6; U) where U ~ p(U) is known.

Normal : X=0+U U~ N(0,1)

Such representations even exist in cases where pivots do not:

Bernoulli: X = /(U < 6) U ~ Unif[0, 1].

Fiducial Procedure

1. Make a “post-data” inference for U without involving 6 by
ignoring a part or all data: e.g., pretend U|X ~ N(0,1).

2. Convert inference for U into inference for 8 by inverting
X = g(6; U) to obtain 8 = h(U; X):

Eg.: 6=X—U~N(X,1).
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Fiducial Inference for Bivariate Normal

(Xi, Yi) bivariate normal with mean 0, var 1 and correlation 6.
16/21

Xiao-Li Meng @ Reduce to sufficient statistics: S; =), (X; + Y,-)2 and
So=3(Xi— Vi)

@ Representation: S; =4 (1+ 9)2 Q1 and S, =4(1— 0)2 (@)
where Q; are i.i.d. an).

@ Inference for Q1, @>: Impute Q1 and @, conditional on

S S>
[ 2L [ 22 o
4@ * 4@ 0

and Q; > S;/16 for i =1,2.

@ Inference for 6: Given Q1, Q>, let 8 = 4%1 — 1.
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Checking Coverage and Length Conditioning on
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Length

Unconditional, 0.02+0.003
X-conditional. 0.04£0.011
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Summary

A Fundamental Principle of Statistical Inference:
Bias-Variance or Relevant-Robust Trade-off

Robust Relevant

sensitive to fy
Rosenbaum and
Rubin (1984)

of statistical evider
Berger and Sellke (1987
Hwang et al. (1992)

Bayesian procedures should also
have good Frequentist properties i.e their
performance should be robust to f, .

Rubin (1984), Little (2006)

edure’s good

Performance of Ba;
confidence interva
fragile when “nt
parameters are present.
Fraser (2011),

Wasserman (2011a)

ance

(1958),
Fraser (2004)

Further refe

Box (1980) ella and Berger (1987)

Samaniego and Reneau (1994)
Berger (2003)

yarri and Berger (2004)

Kass (2011)

For high dimensional
data, the cost of
matching is also high
Robins and
Wasserman (2000)
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Relevant

Full Conditioning

Summary
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